Galperin vs Orthogonal Seismometer Configurations: What’s the Difference and Why It Matters?

In seismic monitoring, triaxial seismometers are essential tools that capture ground motion in three dimensions. But not all triaxial sensors are designed the same way. Two dominant configurations exist: the orthogonal layout and the Galperin symmetric design. Understanding the difference between them is key when deciding how to choose a broadband seismometer or designing your seismic network.

Orthogonal Configuration: The Traditional Layout

Orthogonal seismometers use three sensing elements aligned at right angles:

  • X-axis (East-West)
  • Y-axis (North-South)
  • Z-axis (Vertical)

This configuration provides direct and intuitive measurements of ground motion along geographic axes. It is commonly found in strong-motion sensors and legacy seismic stations.

Pros:

  • Simple and direct mapping to geographic directions
  • Standard format for data processing
  • Useful in structural monitoring when orientation is controlled

Cons:

  • Requires precise alignment to true North and level installation
  • Uneven horizontal sensitivity
  • Prone to increased cross-axis coupling due to asymmetry

Galperin Configuration: The Modern Symmetric Design

First introduced by Evgeny Galperin, this configuration uses three identical sensors, each spaced 120° apart and tilted equally from vertical (typically ~35.26°). Rather than directly measuring along X, Y, and Z, these sensors capture intermediate components. Standard vertical and horizontal motion is then reconstructed through a simple mathematical transformation.

Galperin geometry forms the basis of modern broadband seismometers, including all broadband seismometers offered by QuakeLogic.

Pros:

  • Isotropic azimuthal sensitivity for uniform horizontal response
  • Mechanically balanced and compact design
  • Easier installation — no need for precise geographic orientation
  • Ideal for low-noise, high-fidelity broadband recording
  • Often includes self-leveling mechanisms

Cons:

  • Requires post-processing to derive standard components (Z, N, E)
  • May be unfamiliar to users expecting direct XYZ outputs

Coordinate Transformation in Galperin Systems

The raw sensor outputs (V1, V2, V3) from a Galperin layout are converted into vertical (Z) and orthogonal horizontal (X, Y or N, E) components through a transformation matrix. The result is functionally identical to orthogonal output — but with superior mechanical and dynamic performance.

To obtain standard seismic components — vertical (Z), north (N), and east (E) — from a Galperin-configured broadband seismometer, a mathematical transformation is applied to the raw outputs of the three equally tilted sensors.

Galperin sensors are mounted 120° apart in azimuth and tilted at approximately 35.26° from vertical. This symmetric geometry ensures equal sensitivity in all horizontal directions, making it ideal for high-fidelity broadband seismic recording.

The transformation to orthogonal components is handled by a fixed matrix derived from the Galperin geometry. Here’s a practical example in Python that demonstrates how to convert the raw Galperin outputs (V1, V2, V3) into Z, N, and E components:

import numpy as np

def galperin_to_orthogonal(V1, V2, V3):
    """
    Transforms Galperin outputs (V1, V2, V3) into orthogonal components (Z, N, E).
    
    Assumes Galperin sensors are tilted 35.26 degrees from vertical and 120 degrees apart in azimuth.
    """

    # Galperin angle in degrees and radians
    alpha_deg = 35.2643897  # approximately arccos(1/sqrt(3))
    alpha_rad = np.radians(alpha_deg)

    # Transformation matrix based on Galperin geometry
    # Source: Galperin 1985; commonly used form
    T = np.array([
        [np.cos(alpha_rad), np.cos(alpha_rad), np.cos(alpha_rad)],  # Z (vertical)
        [np.sin(alpha_rad), -0.5 * np.sin(alpha_rad), -0.5 * np.sin(alpha_rad)],  # N (North)
        [0, np.sqrt(3)/2 * np.sin(alpha_rad), -np.sqrt(3)/2 * np.sin(alpha_rad)]  # E (East)
    ])

    # Stack Galperin outputs into column vector
    V = np.array([V1, V2, V3])

    # Perform transformation
    Z, N, E = T @ V

    return Z, N, E

# Example usage
V1, V2, V3 = 0.1, 0.2, 0.15  # Example raw sensor outputs
Z, N, E = galperin_to_orthogonal(V1, V2, V3)

print("Vertical (Z):", Z)
print("North (N):", N)
print("East (E):", E)

This code is useful for researchers, engineers, or software developers integrating Galperin seismometers into their own data acquisition systems or post-processing pipelines.

Why Galperin Excels in Broadband Performance

Galperin-configured sensors offer lower cross-axis sensitivity, reduced internal noise, and azimuthal symmetry. This makes them particularly suited for high-precision seismological research.

Optimizing Your Network Design

Because Galperin-based instruments don’t require precise geographic orientation, they simplify field deployments and reduce installation error. This is especially helpful in large-scale projects and remote installations.

✅ QuakeLogic’s Seismometer Solution

At QuakeLogic, we exclusively offer Galperin-type broadband seismometers, engineered for superior sensitivity, symmetrical mechanical design, and fast, easy deployment. Our systems are:

  • Fully turnkey, with no licensing or calibration fees
  • Designed for broadband performance with low self-noise
  • Delivered with user-friendly software and optional remote monitoring tools
  • Compatible with standard seismic analysis workflows

Whether you’re deploying a temporary station or building out a national seismic network, Galperin configuration delivers the performance you need with the reliability you trust.

📞 Contact Us

Ready to upgrade your monitoring system? Reach out to our team at sales@quakelogic.net or browse our product line at products.quakelogic.net to explore QuakeLogic’s advanced broadband solutions.

Geobox: Revolutionizing Geotechnical Testing on Shake Tables

In the dynamic world of geotechnical engineering, precision, reliability, and adaptability are key to uncovering insights that drive innovation and safety. Geobox by QuakeLogic stands at the forefront of engineering excellence, meticulously designed to enhance the testing capabilities of shake tables for geotechnical research and experimentation.

Simulating Critical Geotechnical Phenomena

Geobox is engineered to simulate and analyze key geotechnical phenomena, empowering engineers and researchers to study complex soil-structure interactions under controlled seismic conditions. Its advanced design allows detailed testing of:

  • Liquefaction: Understanding how saturated soils lose strength during seismic events.
  • Lateral Spreading: Evaluating soil displacement caused by ground shaking and slope instability.
  • Slope Stability: Assessing the resilience of soil slopes under dynamic loading.

These capabilities make Geobox an essential tool for validating geotechnical models, advancing research, and improving infrastructure resilience in seismic-prone regions.


Seamless Integration with Shake Tables

A standout feature of Geobox is its compatibility with a wide range of shake tables offered by QuakeLogic. Whether for small-scale academic experiments or large-scale infrastructure projects, Geobox integrates effortlessly with various shake table systems.

Its easy-mount hardware simplifies setup, reducing time and effort required for deployment. Engineers can focus on their experiments without being bogged down by technical constraints, ensuring a seamless workflow from setup to data acquisition.


Customization for Project-Specific Needs

At QuakeLogic, we understand that no two projects are the same. That’s why the Geobox’s size can be fully customized to meet specific experimental requirements. Whether you’re simulating liquefaction on a small soil column or analyzing slope stability across a large soil mass, Geobox adapts to deliver accurate and reliable results.

This customization empowers researchers to align their testing processes with their project objectives, ensuring outcomes that are both meaningful and actionable. QuakeLogic produces Geobox in custom dimensions, from small-scale to large-scale configurations. Contact us today for a customized quotation.


Robust and Reliable Design

Built to withstand rigorous testing environments, the Geobox’s robust construction ensures durability and repeatability across multiple test cycles. Researchers can trust its performance, even under the most demanding experimental conditions, making it a valuable asset in both academic research labs and industry testing facilities.


Driving Innovation in Geotechnical Engineering

Geobox by QuakeLogic isn’t just a piece of equipment—it’s a gateway to innovation. By enabling detailed analysis of soil behavior under seismic stress, it empowers researchers and engineers to develop safer, more resilient infrastructure solutions.

With its versatility, precision, and robust design, Geobox is setting new standards for geotechnical testing, offering unparalleled value to educational institutions, research facilities, and industry partners worldwide.

Seeing is Believing! Experience the power of Geobox firsthand and discover how it can transform your geotechnical testing processes.

Contact QuakeLogic today to learn more about how the Geobox can be tailored to meet your project needs and drive your research forward. Visit GEOBOX product page by clicking HERE.

Proudly Made in the USA.

At QuakeLogic, we don’t just deliver products—we deliver solutions.

About QuakeLogic

QuakeLogic is a leading provider of advanced seismic monitoring solutions, offering a range of products and services designed to enhance the accuracy and efficiency of seismic data acquisition and analysis. Our innovative technologies and expert support help organizations worldwide to better understand and mitigate the impacts of seismic events.

Contact Information

Email: sales@quakelogic.net
Phone: +1-916-899-0391
WhatsApp: +1-650-353-8627
Website: www.quakelogic.net

For more information about our products and services, please visit our website or contact our sales team. We are here to help you with all your seismic monitoring needs.

Earthquake P- and S-waves, why does their speed matter?

Earthquakes, one of nature’s most formidable phenomena, can cause widespread destruction within seconds. However, advancements in seismology have led to the development of Earthquake Early Warning (EEW) systems, providing precious seconds to minutes of warning before the shaking starts. The key to these warnings lies in the understanding of P-waves and S-waves generated by earthquakes and their speeds.

The Speed of P-waves and S-waves

When an earthquake occurs, it releases energy in the form of seismic waves, primarily P-waves (Primary waves) and S-waves (Secondary waves). P-waves, being the fastest, travel through both solid and liquid layers of the Earth at speeds ranging from about 5 to 7 kilometers per second (km/s) in the Earth’s crust, and 8 to 13 km/s in the mantle. S-waves, on the other hand, only move through solids and are slower, with speeds of about 3 to 4 km/s in the crust and 4.5 to 7.5 km/s in the mantle.

The Importance of Speed Difference

The speed difference between P-waves and S-waves is crucial for Earthquake Early Warning systems. P-waves, although less destructive, reach sensors first, providing a brief window of time before the more damaging S-waves arrive. This time gap can vary depending on the distance from the earthquake’s epicenter. The closer one is to the epicenter, the shorter the warning time, due to the smaller gap between the arrival times of P-waves and S-waves.

Proximity to the Epicenter and Warning Time

For those located very close to the earthquake epicenter, the warning time may be minimal or non-existent. This is because the S-waves, responsible for most of the shaking and damage, follow closely behind the P-waves. In such scenarios, every second of warning can be critical for taking protective actions, such as dropping to the ground, taking cover under a sturdy piece of furniture, and holding on until the shaking stops.

The Blind Zone Challenge

A significant challenge for regional seismic network-based EEW systems is the “blind zone.” This area, typically within 10 to 20 kilometers of the epicenter, may receive little to no warning before shaking starts. The reason is that it takes time for the seismic waves to be detected by the network, processed, and then relayed as a warning to the affected area.

On-site Earthquake Early Warning Systems

To address the blind zone issue, on-site EEW systems have been developed. These systems are installed at individual locations, such as buildings or infrastructure facilities, and can detect P-waves directly, providing immediate local warnings. While they may not offer extensive lead times, they can be especially effective in near-epicenter areas where regional EEW systems struggle to provide timely alerts.

Conclusion

Understanding the dynamics of P-waves and S-waves and their implications for early warning systems is essential in mitigating earthquake risks. While the difference in speed between these waves offers a crucial, albeit brief, window for action, challenges such as the blind zone necessitate innovative solutions like on-site EEW systems. As technology advances, the goal is to extend the warning times and reduce the impact of earthquakes, safeguarding communities and saving lives in the process.